

700 MHz Public Safety Broadband Network, Multi-Vendor Interoperability March 17, 2011

Dr. Gregory Henderson Director Broadband Products Public Safety and Professional Communications Harris Corporation

Agenda

- Concept Network Architecture
- Interoperability/Standards

Typical LTE Core Network

High-level View of the LTE Core

- "Provisioning and Management"
 - Elements: HSS and PCRF
 - Contains user profiles, authentication information, etc.
 - Contains information to setup user bearers
 - Requires centralized management for roaming (nationwide interoperability)
- "Data Plane/Mobility Management"
 - Elements: MME, S-GW, PDN-GW
 - Backhaul considerations drive proximity to RAN and distributed deployment decisions
 - User plane high bandwidth requirements: 50-100Mbps/site
 - User mobility management
 - Often best geographically distributed throughout the network

Network Architecture

- Harris believes that effective and scalable nation-wide interoperability can be achieved through a multiplicity of Regional Core Networks
- A national PLMN ID should be assigned for nationwide roaming
- Regional Provisioning Core
 - Option 1: A PLMN ID can be assigned to each regional core
 - Option 2: Regional cores identified by subscriber location function (SLF)
- Sub-Regional Networks should be assigned IMSI subsets within the regional core to which they are aggregated
- Regional cores may be assigned by a number of alternatives (State, Major Economic Areas, Regional Planning Boundaries, etc.)

Notional Architecture

Nationwide Roaming

- The nationwide PLMN ID provides roaming for all users within a defined set of roles and responsibilities
- Roaming agreements between Regional Core Networks can be established by their respective governing bodies
 - Adds differentiation to nationwide roaming if desired
- Border regions may have more comprehensive agreements and policies due to a more frequent occurrence of roaming incidents

Considerations for Regional Core

- Each region can define an architecture for the "Regional Core"
- Each region requires a single "Master" HSS
- The core can be distributed:
 - Region can contain many S-GW, PDN-GW, and MME
 - Region MAY choose to have distributed local HSS for subregion traffic
 - Must "roll up" to the "Master" HSS
- Some regions may choose to have a single core for the whole region
- The "Master" HSS contains information about other core elements for each user (i.e. PDN-GW)
- Regional cores can be privately owned by Public Safety jurisdictions or commercial entities (e.g. cellular operator, hosting partners, etc.)

Advantages of Distributed Network

- Regional Flexibility
 - Many business models available
- Tractable User Configuration/Management
 - User profiles defined locally
 - Each "Region" defines best architecture
- Distributed Data Core
 - Local traffic stays local
- Redundant/Distributed Network
 - No single point of failure
- Standardized Nationwide Roaming/Performance

Agenda

- Concept Network Architecture
- Interoperability/Standards

Interoperability

- NPSTC, PSST, etc. endorsed the selection of LTE because of its inherent interoperability characteristics
 - All interfaces and functions are implemented as defined by 3GPP
- Commercial operators use components from multiple vendors in their networks today
- The use of equipment from multiple vendors...
 - Enables fair competition
 - Promotes innovation in the market place
 - Promotes innovation in the user space

3GPP Areas of Currently Defined Interoperability

- Network Identification
- Roaming
- Admission Control
- Priority Access
- Security
- Performance
- Reliability
- Capacity
- Coverage

System Profiles/Conformance

- Each release of LTE contains many features and capabilities
 - Vendors may implement different features (or not)
 - Interoperability requires defined tests/procedures
- Harris supports the formation of LTE Public Safety System Profiles associated with current and future LTE releases
 - These system profiles should be created in an ANSI recognized standards body
 - Profiles can be created for "standard" public safety roaming features
 - For example: QoS/Priority for roaming fire user
 - Interoperability testing procedures for profile validation should also be defined in ANSI standards body

Interoperability Testing

Core network elements

- Multi-vendor IOT is performed today in operator labs
- "Public Safety" test bed [e.g. PSCR Demonstration Network] is required to validate profiles/procedures as defined by standards process

User devices

- IOT testing profiles are being created by PCS Type Certification Review Board (PTCRB)
- NIST/PSCR participated in the creation of the band 14 profile in PTCRB
- PTCRB can be used for User Device validation

Summary

- Network architecture
 - Regional distributed network
 - Nationwide roaming PLMN ID and framework
- Interoperability
 - ANSI standards body for creation of:
 - Public Safety LTE system Profiles
 - Public Safety LTE test procedures
 - Standardized interoperability testing/verification
 - PTCRB
 - NIST PSCR Lab